Lompat ke konten Lompat ke sidebar Lompat ke footer

Origami Insects 2 Pdf Free Download

Abstract

Nanoscale robots have potential as intelligent drug delivery systems that respond to molecular triggers1,2,3,4. Using DNA origami we constructed an autonomous DNA robot programmed to transport payloads and present them specifically in tumors. Our nanorobot is functionalized on the outside with a DNA aptamer that binds nucleolin, a protein specifically expressed on tumor-associated endothelial cells5, and the blood coagulation protease thrombin within its inner cavity. The nucleolin-targeting aptamer serves both as a targeting domain and as a molecular trigger for the mechanical opening of the DNA nanorobot. The thrombin inside is thus exposed and activates coagulation at the tumor site. Using tumor-bearing mouse models, we demonstrate that intravenously injected DNA nanorobots deliver thrombin specifically to tumor-associated blood vessels and induce intravascular thrombosis, resulting in tumor necrosis and inhibition of tumor growth. The nanorobot proved safe and immunologically inert in mice and Bama miniature pigs. Our data show that DNA nanorobots represent a promising strategy for precise drug delivery in cancer therapy.

This is a preview of subscription content

Access options

Subscribe to Journal

Get full journal access for 1 year

$99.00

only $8.25 per issue

All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Seeman, N.C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar

  2. 2

    Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).

    CAS  Article  Google Scholar

  3. 3

    Douglas, S.M., Bachelet, I. & Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    CAS  Article  Google Scholar

  4. 4

    Amir, Y. et al. Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9, 353–357 (2014).

    CAS  Article  Google Scholar

  5. 5

    Huang, Y. et al. The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood 107, 3564–3571 (2006).

    CAS  Article  Google Scholar

  6. 6

    Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    CAS  Article  Google Scholar

  7. 7

    Bhatia, D., Surana, S., Chakraborty, S., Koushika, S.P. & Krishnan, Y. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat. Commun. 2, 339 (2011).

    Article  Google Scholar

  8. 8

    Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    CAS  Article  Google Scholar

  9. 9

    Chauhan, V.P. & Jain, R.K. Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958–962 (2013).

    CAS  Article  Google Scholar

  10. 10

    Huang, X. et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275, 547–550 (1997).

    CAS  Article  Google Scholar

  11. 11

    Hu, P. et al. Comparison of three different targeted tissue factor fusion proteins for inducing tumor vessel thrombosis. Cancer Res. 63, 5046–5053 (2003).

    CAS  PubMed  Google Scholar

  12. 12

    Jain, R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    CAS  Article  Google Scholar

  13. 13

    Agemy, L. et al. Nanoparticle-induced vascular blockade in human prostate cancer. Blood 116, 2847–2856 (2010).

    CAS  Article  Google Scholar

  14. 14

    Sambrano, G.R., Weiss, E.J., Zheng, Y.W., Huang, W. & Coughlin, S.R. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413, 74–78 (2001).

    CAS  Article  Google Scholar

  15. 15

    Pinheiro, A.V., Han, D., Shih, W.M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

    CAS  Article  Google Scholar

  16. 16

    Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  Google Scholar

  17. 17

    Gerling, T., Wagenbauer, K.F., Neuner, A.M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    CAS  Article  Google Scholar

  18. 18

    Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    CAS  Article  Google Scholar

  19. 19

    Schüller, V.J. et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5, 9696–9702 (2011).

    Article  Google Scholar

  20. 20

    Jiang, Q. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).

    CAS  Article  Google Scholar

  21. 21

    Zhang, Q. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8, 6633–6643 (2014).

    CAS  Article  Google Scholar

  22. 22

    Chen, Y.J., Groves, B., Muscat, R.A. & Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748–760 (2015).

    CAS  Article  Google Scholar

  23. 23

    Soundararajan, S., Chen, W., Spicer, E.K., Courtenay-Luck, N. & Fernandes, D.J. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 68, 2358–2365 (2008).

    CAS  Article  Google Scholar

  24. 24

    Nutiu, R. & Li, Y. Structure-switching signaling aptamers. J. Am. Chem. Soc. 125, 4771–4778 (2003).

    CAS  Article  Google Scholar

  25. 25

    Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  Article  Google Scholar

  26. 26

    Kong, G., Braun, R.D. & Dewhirst, M.W. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 60, 4440–4445 (2000).

    CAS  PubMed  Google Scholar

  27. 27

    Zhang, H. et al. Identification of urine protein biomarkers with the potential for early detection of lung cancer. Sci. Rep. 5, 11805 (2015).

    Article  Google Scholar

  28. 28

    Surana, S., Shenoy, A.R. & Krishnan, Y. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 10, 741–747 (2015).

    CAS  Article  Google Scholar

  29. 29

    Liu, Y., Zeng, B.H., Shang, H.T., Cen, Y.Y. & Wei, H. Bama miniature pigs (Sus scrofa domestica) as a model for drug evaluation for humans: comparison of in vitro metabolism and in vivo pharmacokinetics of lovastatin. Comp. Med. 58, 580–587 (2008).

    CAS  PubMed  PubMed Central  Google Scholar

  30. 30

    Goldberg, S.N. et al. Image-guided tumor ablation: proposal for standardization of terms and reporting criteria. Radiology 228, 335–345 (2003).

    Article  Google Scholar

  31. 31

    Miniard, A.C., Middleton, L.M., Budiman, M.E., Gerber, C.A. & Driscoll, D.M. Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression. Nucleic Acids Res. 38, 4807–4820 (2010).

    CAS  Article  Google Scholar

  32. 32

    Thompson, J.S. et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J. Exp. Med. 192, 129–135 (2000).

    CAS  Article  Google Scholar

  33. 33

    Douglas, S.M., Chou, J.J. & Shih, W.M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. USA 104, 6644–6648 (2007).

    CAS  Article  Google Scholar

  34. 34

    Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    CAS  Article  Google Scholar

  35. 35

    Guyer, R.A. & Macara, I.G. Loss of the polarity protein PAR3 activates STAT3 signaling via an atypical protein kinase C (aPKC)/NF-κB/interleukin-6 (IL-6) axis in mouse mammary cells. J. Biol. Chem. 290, 8457–8468 (2015).

    CAS  Article  Google Scholar

  36. 36

    Gottfries, J., Melgar, S. & Michaëlsson, E. Modelling of mouse experimental colitis by global property screens: a holistic approach to assess drug effects in inflammatory bowel disease. PLoS One 7, e30005 (2012).

    CAS  Article  Google Scholar

  37. 37

    O'Callaghan, P., Li, J.P., Lannfelt, L., Lindahl, U. & Zhang, X. Microglial heparan sulfate proteoglycans facilitate the cluster-of-differentiation 14 (CD14)/Toll-like receptor 4 (TLR4)-dependent inflammatory response. J. Biol. Chem. 290, 14904–14914 (2015).

    CAS  Article  Google Scholar

Download references

Acknowledgements

The authors thank L.Z. Xu (Medical and Health Analysis Center of Peking University) for animal imaging and G. Z. Shi (Laboratory Animal Center of Institute of Biophysics, Chinese Academy of Sciences) for histological examination of minipigs. We also thank A. Sheftel from High Impact Editing for improving the English of the manuscript. This work was supported by grants from National Basic Research Plan of China (MoST Program 2016YFA0201601 to G.N. and B.D.), the National Natural Science Foundation of China (31730032 to G.N., 21222311, 21573051, 91127021 to B.D., the National Distinguished Young Scientists program 31325010 to G.N.), Innovation Research Group of National Natural Science Foundation (11621505 to G.N. and Yuliang Z., 21721002 to B.D.), Beijing Municipal Science & Technology Commission (Z161100000116035 to G.N., Z161100000116036 to B.D.), CAS Interdisciplinary Innovation Team to B.D., G.N. & Yuliang Z., Key Research Program of Frontier Sciences, CAS, Grant No. QYZDB-SSW-SLH029 to B.D. and US National Institute of Health Director's Transformative Research Award (R01GM104960-01 to H.Y.).

Author information

Author notes

  1. Suping Li, Qiao Jiang, Shaoli Liu and Yinlong Zhang: These authors contributed equally to this work.

Affiliations

  1. CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China.

    Suping Li, Qiao Jiang, Shaoli Liu, Yinlong Zhang, Yanhua Tian, Chen Song, Jing Wang, Yiguo Zou, Guangjun Nie, Baoquan Ding & Yuliang Zhao

  2. University of Chinese Academy of Sciences, Beijing, China

    Suping Li, Shaoli Liu, Guangjun Nie, Baoquan Ding & Yuliang Zhao

  3. College of Pharmaceutical Science, Jilin University, Changchun, China

    Yinlong Zhang

  4. Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China

    Yanhua Tian

  5. QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia

    Gregory J Anderson

  6. Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China

    Jing-Yan Han

  7. School of Molecular Sciences, Center for Molecular Design and Biomimetics

    Yung Chang, Yan Liu & Hao Yan

  8. School of Life Sciences, Center for Immunotherapy, Vaccines, and Virotherapy at the Biodesign Institute, Arizona State University, Tempe, Arizona, USA

    Yung Chang, Yan Liu & Hao Yan

  9. Institute of Zoology, Chinese Academy of Sciences, Beijing, China

    Chen Zhang & Guangbiao Zhou

  10. Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China

    Liang Chen

Contributions

Suping L., Q.J., Shaoli L., Yinlong Z., Y.T., C.S., B.D., Yuliang Z. and G.N. conceived and designed the experiments. Suping L., Q.J., Shaoli L., Yinlong Z., C.S., Y.T. and C.Z. performed the experiments. Y.T., C.S., H.Y., B.D., Yinlong Z. and G.N. collected and analyzed the data. J.W., G.A., J.H., Yiguo Z., Y.C., Y.L., L.C., G.-B.Z., G.Z. and C.Z. provided suggestions and technical support on the project. H.Y., B.D., Yuliang Z., and G.N. supervised the project. Suping L., Q.J., H.Y., B.D. and G.N. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Guangjun Nie, Hao Yan, Baoquan Ding or Yuliang Zhao.

Ethics declarations

Competing interests

An international provisional patent has been filed based on this work.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Jiang, Q., Liu, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36, 258–264 (2018). https://doi.org/10.1038/nbt.4071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1038/nbt.4071

Further reading

  • A DNA nanodevice-based vaccine for cancer immunotherapy

    • Shaoli Liu
    • Qiao Jiang
    • Baoquan Ding

    Nature Materials (2021)

  • Nuclease resistance of DNA nanostructures

    • Arun Richard Chandrasekaran

    Nature Reviews Chemistry (2021)

  • DNA origami

    • Swarup Dey
    • Chunhai Fan
    • Pengfei Zhan

    Nature Reviews Methods Primers (2021)

  • Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst

    • Bin Zhao
    • Yingshuai Wang
    • Qianjun He

    Nature Communications (2021)

  • The biological applications of DNA nanomaterials: current challenges and future directions

    • Wenjuan Ma
    • Yuxi Zhan
    • Yunfeng Lin

    Signal Transduction and Targeted Therapy (2021)

Posted by: fritztroyanie016705.blogspot.com

Source: https://www.nature.com/articles/nbt.4071/

Posting Komentar untuk "Origami Insects 2 Pdf Free Download"